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Abstract 

Many players and fans of basketball believe in the “hot hand” phenomenon, yet for years there 
has been little statistical evidence that such a phenomenon exists (hence the “hot hand fallacy”). 
However, recent research of Miller and Sanjurjo (2014, 2015, 2016b) suggests that previous 
analyses of the hot hand have been subject to a bias, and after correcting for this bias, there is in 
fact evidence that the hot hand is real.  Miller and Sanjurjo’s analyses are based on permutation 
tests.  In this work, we discuss the ideas behind the permutation test procedure, illustrate an 
online Shiny app we developed for conducting the test, and present related simulation-based 
inference activities for introductory statistics courses.  Our examples are based on data from the 
NBA Three Point Contest, in which we do find evidence of an average hot hand effect.  
Furthermore, we discuss additional topics concerning the bias in previous hot hand studies which 
can be introduced in courses with a stronger emphasis on probability or mathematical statistics. 
In particular, we discuss a simple coin flipping problem with a surprising solution which has 
been the subject of much recent media coverage and debate. 

 

1. Introduction 

 

Many basketball players and fans alike believe in the “hot hand” phenomenon: the idea that 
making several shots in a row increases a player’s chances of making the next shot.  However, 
the consensus conclusion of nearly thirty years of studies on the hot hand, beginning with the 
seminal study of Gilovich et al. (1985), has been that there is no statistical evidence that the hot 
hand in basketball is real.  As a result, many statisticians regularly caution against the “hot hand 
fallacy”: the belief that the hot hand exists when, in reality, the degree of streaky behavior 
typically observed in sequential data is consistent with what would be expected simply by chance 
in independent trials.  The belief is so pervasive that the Nobel prize-winning economist Daniel 
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Kahneman has called the hot hand fallacy a “massive and widespread cognitive illusion” 
(Kahneman 2011). 

However, recent research of Miller and Sanjurjo (2014, 2015, 2016b) suggests the hot hand 
fallacy is not a fallacy after all.  The authors find strong evidence in favor of the hot hand effect 
in basketball shooting.  Furthermore, the authors discover that previous studies on the hot hand 
in basketball, starting with Gilovich et al. (1985), have been subject to a bias.  Using methods 
that correct for the bias, Miller and Sanjurjo reanalyze previous hot hand studies and find that the 
data used in those studies actually provide evidence in favor of the hot hand.  Furthermore, they 
find evidence that not only is the hot hand effect real, its size can be quite substantial.  The 
research of Miller and Sanjurjo has received a great deal of media attention (Cohen 2015; 
Ellenberg 2015; Johnson 2015; Remnick 2015) and has reignited debates on the hot hand. 

Miller and Sanjurjo’s analyses are based on permutation tests.  In this work, we discuss the ideas 
behind the permutation test procedure, illustrate an online Shiny app 
(http://shiny.stat.calpoly.edu/Hothand/) we developed for conducting the test, and present related 
activities for introductory statistics courses in which students learn simulation-based inference 
(SBI) methods.  Furthermore, we discuss additional topics concerning the bias in previous hot 
hand studies which can be introduced in courses with a stronger emphasis on probability or 
mathematical statistics. 

Over the past decade simulation-based approaches to introducing concepts of statistical inference 
and for implementing inference techniques have gained in popularity and acceptance among 
statistics educators.  There are now several widely used textbooks (Diez et al. 2014; Lock et al. 
2012; Tintle et al. 2015) for teaching introductory statistics using an SBI approach.  The merits 
of an SBI approach to teaching inference have been discussed in many publications; we do not 
attempt to provide a full literature review here.  Our randomization-based analysis of the hot 
hand demonstrates two advantages of the SBI approach: it is readily adapted to the use of non-
traditional statistics, and SBI methods are valid in many situations in which theory-based 
(normal) methods are not.  

In Section 2 we present Miller and Sanjurjo’s permutation test.  The main idea behind the 
procedure should be natural to students familiar with SBI methods: Under the null hypothesis of 
no hot hand the null distribution of a “streak statistic” is obtained by fixing the response values 
(success or failure) and shuffling the order of the observed outcomes.  We also illustrate the 
corresponding Shiny app which functions like other popular SBI applets (e.g. Rossman/Chance, 
StatKey). 

In Section 3 we use data, which we provide, from the 2013 through 2017 NBA Three-Point 
Contest to perform permutation tests and to estimate the size of the hot hand effect.  Our example 
analysis does exhibit evidence of an average hot hand effect in the NBA Three-Point Contest, a 
conclusion consistent with Miller and Sanjurjo’s (2015) claims. 

Section 4 contains ideas for how research on the hot hand can be introduced in courses with a 
stronger emphasis on probability or mathematical statistics.  We discuss a coin flipping problem 
introduced by Miller and Sanjurjo (2016b) to motivate the source of the bias in previous studies 
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of the hot hand.  While the problem is seemingly simple, its answer is unintuitive and 
demonstrates the importance of understanding fundamental concepts in probability.  To 
demonstrate the ramifications of the bias, we reproduce an analysis of Miller and Sanjurjo 
(2016b) which finds, after correcting for bias, evidence of an average hot hand effect present in 
the original Gilovich et al. (1985) data. 

Our work is strongly motivated by the recent papers of Miller and Sanjurjo (2014, 2015, 2016a, 
2016b).  Our main contributions include: a presentation of the permutation test which is 
accessible to introductory statistics educators and students; specific SBI activities which involve 
both tactile and technology-based simulation in a novel context; the Shiny app, which enables 
users to readily conduct hot hand analyses; the data set and an example analysis of results from 
the 2013-2017 NBA Three Point Contests; and a discussion of how recent hot hand research can 
be incorporated in courses involving probability or mathematical statistics. 

 

2. Randomization-based analysis of the hot hand phenomenon 
 

Here we describe Miller and Sanjurjo’s (2014) randomization-based procedure that tests for hot 
hand behavior in a sequence of success/failure trials, such as the shot attempts of a basketball 
player.  We also illustrate a Shiny app which implements the procedure.  The procedure and the 
app are well suited for use in an introductory statistics course which covers simulation-based 
inference methods.  In particular, the analysis we present can be adapted into transfer activities 
which enable students to employ simulation-based reasoning in a novel situation involving a data 
type (sequential trials) and statistics (subsample proportions, runs statistics) not commonly 
encountered in typical course topics. 

 

2.1 Assumptions 

 

The procedure is applicable when the data consist of the results of success/failure trials with the 
outcomes recorded in sequence.  We focus on applications to basketball, in which each trial is a 
field goal attempt by a particular player.  (Other applications in which hot hand type behavior is 
of interest include gambling, stock prices, and polling, as well as other sports.) 

The test procedure relies on the following assumptions about the data generating process. 

1. Each trial results in success (1) or failure (0). 

2. The number of trials is fixed.  [While we assume throughout that the number of trials is 
fixed (not random), it is sufficient that the number of trials be independent of the 
outcomes of the trials.] 

3. The probability that a trial results in success is the same for all trials. 
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We will use the data in Table 1 throughout this section to illustrate the test procedure. 

 

Table 1.  Results for Stephen Curry in the first round of the 2016 NBA Three-Point Contest. 

Attempt # 1 2 3 4 5 6 7 8 9 10 11 12 13 

Outcome 0 0 0 1 1 0 1 0 1 1 1 1 1 

 
Attempt # 14 15 16 17 18 19 20 21 22 23 24 25  

Outcome 1 1 1 1 1 1 0 0 0 0 1 1 

 

2.2 Statistics which measure the hot hand effect 

 

While there is no consensus definition of what constitutes the hot hand, the term generally refers 
to a tendency for trials following streaks of successes to have an increased likelihood of resulting 
in success. Several statistics can be used to measure a hot hand effect; those included in the app 
are described below. 

Helpful hint: Provide students with data like that in Table 1 and ask “How could we measure 
if this player had the hot hand?”  Have students brainstorm various statistics and discuss their 
merits.  (If desired, the source code of the app can be adapted to handle statistics other than 
the ones listed below.) 

For statistics 1 through 4 below, the user must define the streak length: How many successes 
must be observed in a row in order to consider it a hot streak?  Regarding the hot hand in 
basketball, 3 is commonly used for the streak length.  (The app allows values between 1 and 7.) 

In the app, the user can choose a streak statistic from the following.  

1. Proportion of S after streaks of S. The proportion of those trials that are immediately 
preceded by a streak of successes that result in success. For example, if the streak length 
is 3 and the sequence is 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, trials 5, 6, and 10 are preceded by a 
streak of 3 successes, and the proportion of successes on these trials is 2/3 = 0.6667.  
(This statistic is called the “hit streak momentum” by Miller and Sanjurjo (2014, 2015).) 

2. Difference in proportion of S (after streaks of S - other trials). The difference between 
statistic 1 and the proportion of the remaining trials that result in success. In the previous 
example, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, the value of the statistic is 2/3 - 6/7 = -0.1905. 

3. Difference in proportion of S (after streaks of S - after streaks of F). The difference 
between statistic 1 and the proportion of those trials that are immediately preceded by a 
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streak of failures, of the same length, that result in success. In the previous example, this 
statistic cannot be computed since there are no trials which follow a streak of 3 failures. 
In the sequence 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, with streak length 3, the value of the statistic is 
2/2 - 1/2 = 0.5.  (This statistic plays an important role in Gilovich et al. (1985).) 

4. Frequency of S streaks. The proportion of trials that are immediately preceded by a streak 
of successes. In the original example 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, the value of the statistic is 
3/7 = 0.4286. With a streak length of 3 the first 3 trials are not counted in determining the 
frequency, and similarly for other streak lengths.  (This statistic is called the “hit streak 
frequency” by Miller and Sanjurjo (2014, 2015).) 

5. Longest run of S. The largest number of successes in a row in the observed sequence. In 
the example 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, the value of the statistic is 4.  (This statistic is called 
the “hit streak length” by Miller and Sanjurjo (2014, 2015).) 

6. Total number of runs. The total number of runs, of any length, of successes or failures. In 
the example 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, the value of the statistic is 4. (This is the usual 
“runs statistic”, and it is equivalent to the total number of “switches” or “alterations” 
between S and F if the first trial is counted as the first switch.) 

Table 2 displays the values of these statistics, with a streak length of 3, for the data in Table 1.  
Nine trials (attempts 12 through 20) are each preceded by a streak of 3 successes, and 8 of these 
trials result in success; while 3 trials (attempts 4, 23, and 24) are each preceded by a streak of 3 
failures, and 2 of these trials result in success. The overall proportion of successes is 16/25 = 
0.64.   

 

Table 2.  Observed value of streak statistics, with a streak length of 3, for data in Table 1. 

1 Proportion of S after streaks of S 8/9 = 0.8889 
2 Difference in proportion of S (after streaks of S - other trials) 8/9 – 8/16 = 0.3889 
3 Difference in proportion of S (after streaks of S - after streaks of F)  8/9 – 2/3 = 0.2222 
4 Frequency of S streaks 9/22 = 0.4091 
5 Longest run of S 11 
6 Total number of runs 8 

 

Alternative application: See Section 3 of Miller and Sanjurjo (2015) for a more detailed 
discussion of the various statistics.  The authors also consider a composite statistic which 
combines several of the streak statistics. 

Using the app: In the app, data like that in Table 1 can be entered simply by copying the 0/1 
values in order (separated by commas, e.g. 0, 0, 0, 1, 1, 0, 1).  Alternatively, the user has the 
option to enter the following three values. 

1. Total number of trials 
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2. Total number of successes 

3. Observed value of the streak statistic. 

The second input method allows the user to analyze data from the hot hand literature, where 
tables of summary statistics are usually available but entire outcome sequences are not.  (We 
use the summary statistics input option in Section 4.4.) 

 

2.3 Permutation test of the hot hand effect 
 

Miller and Sanjurjo (2014) introduced a permutation test for the hot hand effect.  The test is 
based on concepts which should be natural to students familiar with simulation-based inference 
methods in an introductory statistics course.  Furthermore, the permutation distribution of the 
streak statistic is often not well approximated by a normal distribution, even when the sample 
size is large, and so theory-based methods do not apply.  [However, the non-normal shape of the 
null distribution is not the most serious problem. The crucial issue with theory-based methods in 
this context is that a naïve application of the typical theory-based method assumes an incorrect 
mean of the null distribution, resulting in a bias which can be substantial.  We discuss the issue 
of bias further in Section 4.] 

 

2.3.1 Simulating the null distribution 

 

The null hypothesis is that the trials are independent, consistent with no hot hand effect.  
Recalling the assumptions in Section 2.1, if the null hypothesis is true then the trials are 
Bernoulli trials.  Therefore, if the null hypothesis is true, the probability that n trials result in a 
particular ordered sequence of outcomes consisting of s successes is ݌௦ሺ1 െ  ሻ௡ି௦, where p is݌
the probability of success in a single trial.  While p is unknown, conditional on the observed 
number of successes s, each possible ordering of the s successes and n‐s failures is equally likely 
under the null hypothesis (that is, the trials are exchangeable). It follows that the exact null 
distribution of a streak statistic for a sequence of n trials with s successes can be constructed by 
computing the value of the streak statistic for each of the possible ൫௡௦൯ permutations of the s 
successes among the n trials.  In practice, the null distribution can be approximated by 
simulating the value of the streak statistic for a large number of randomly generated 
permutations of the observed data. 

Potential pitfall:  An assumption is that the trials are identically distributed: the 
(unconditional, marginal) probability of success is assumed to be the same for all trials.  The 
null hypothesis is that the trials are independent: the conditional probability of success given 
that the trial follows a streak of successes is equal to the unconditional probability of success.  
Students often confuse these two distinct notions – constant probability of success (i.e. 
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identically distributed trials) versus independent trials – and this could be an opportunity for 
review or clarification.   

Consider the data in Table 1 with 16 successes in 25 trials.  The null distribution of a hot hand 
statistic can be simulated by randomly permuting the order of the 16 successes and 9 failures, 
computing the statistic for the resulting permutation, and repeating many times.  The app 
implements this process; the following figures display examples of simulation output. 

Helpful hint: Students should be able to identify that the null hypothesis is of no hot hand 
effect.  For data like that in Table 1 ask students how they might simulate the null 
distribution of a streak statistic.  Take advantage of students’ familiarity with randomization-
based tests for comparing groups.  In that scenario, we fix the values of the response and re-
randomize the groups to generate a hypothetical value from the null distribution under the 
null hypothesis of no difference between groups.  In the hot hand procedure, we again fix the 
value of the response (success or failure) but now we re-randomize the order of the attempts 
to generate a hypothetical value from the null distribution.  

Helpful hint: Prior to using the app, have students work in small groups to perform a tactile 
simulation following these instructions.  Obtain a set of index cards, one card for each trial in 
the observed data.  Count the number of successes in the observed data and mark (with “1”) 
that many cards as successes and mark the others as failures (“0”).  Shuffle the cards well and 
then deal them out one at a time, recording the outcomes in sequence (1, 1, 0, 1, and so on, 
like in Table 1).  Compute the value of the streak statistic for this particular shuffle to obtain 
one hypothetical value of the statistic under the null hypothesis.  [In the app, checking the 
box for “show most recent shuffle” will illustrate this process.]  Have the groups repeat the 
process a few times to construct (e.g. on the blackboard) a null distribution like in Figure 1, 
which could then be used to obtain an initial approximation of the p-value. 

Figure 1.  One hundred simulated values of streak statistic 1 with streak length 3 when there are 
16 successes out of 25 trials. 
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Using the app: Only the number of trials and the observed number of successes are needed to 
simulate the (null) permutation distribution. Thus, in addition to data analysis and inference, 
the app can be used to investigate some of the probabilistic concepts in Section 4.  (See the 
“alternative application” at the end of Section 4.4.)   

 

Figure 2 and Figure 3 display the simulated null distribution for the data in Table 1 (16 successes 
in 25 trials) for streak statistics 1 and 2, respectively, with a streak length of 3.  It should be 
apparent that the distributions do not have a nice or well recognized shape.   

Potential pitfall: One might expect the mean of the null distribution in Figure 2 to be 0.64, 
the overall proportion of successes; however, it is actually about 0.55.  Similarly, one might 
expect the mean of the null distribution in Figure 3 to be 0, while it is about -0.10.  See 
Section 4 for further discussion of related issues.  (Of course, the value of the null mean is 
not needed to compute the simulation-based p-value.) 

Using the app: As alluded to in the example for statistic 3 in Section 2.2, for streak statistics 
1 through 4 the value of the statistic cannot be computed for a permutation in which there are 
no streaks of the specified length.  Therefore, the app distinguishes between the number of 
repetitions performed and the number of simulated values of the statistic (e.g. 20,000 versus 
19,977 in Figure 2).  The latter value is the denominator of the simulated p-value. 

 

Figure 2.  Simulated null distribution of streak statistic 1 with streak length 3 when there are 16 
successes in 25 trials. 

 

Figure 3.  Simulated null distribution of streak statistic 2 with streak length 3 when there are 16 
successes in 25 trials. 
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Students are likely familiar with checking conditions such “at least 10 successes and 10 failures” 
to assess validity of a normal approximation of a distribution of a sample proportion (or of a 
difference in proportions).  However, the streak statistics involve subsample proportions: the 
proportion of trials which are immediately preceded by a streak of successes that result in 
success.  The number of trials which are preceded by a streak can be relatively small, especially 
when the streak length is large.  Thus, the effective sample size for the subsample proportion can 
be much smaller than the actual number of trials.  Furthermore, even when the sample size is 
relatively large the permutation distribution of a streak statistic is often not well approximated by 
a normal distribution, as illustrated by Figure 4 which corresponds to 50 successes in 100 trials.  
Therefore, this hot hand analysis provides a scenario in which simulation-based methods are 
natural while theory-based methods often do not apply. 

Figure 4.  Null distribution of streak statistic 1 with streak length 3 when there are 50 successes 
in 100 trials. 
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2.3.2 Computing the p-value 
 

As usual, an approximate p-value is provided by the proportion of values in the simulated null 
distribution which are at least as extreme as the observed value of the statistic.  (In the app the p-
value is computed by checking the box for “Compute p-value”.) Since we are primarily 
interested in evidence against the null hypothesis of no hot hand in the direction of hot hand 
behavior, one-sided p-values are computed. 

 For the total number of runs (statistic 6 in Section 2.2), smaller values of the statistic are 
stronger evidence to reject the null hypothesis of no hot hand. (In hot hand behavior we 
would expect longer, but fewer, runs of success.) 

 For all other streak statistics, larger values of the statistic are stronger evidence to reject 
the null hypothesis of no hot hand. For example, the larger the proportion of successes on 
trials preceded by streaks is than on other trials, the stronger the evidence of a hot hand 
effect. 

Consider the data in Table 1.  The observed value of the proportion of trials that are preceded by 
3 successes which result in success is 0.8889, which yields a simulated p-value of about 0.02, as 
illustrated by Figure 5.  Therefore in this particular sequence of shots there is some evidence of 
hot hand behavior as measured by this particular streak statistic. 

Figure 5.  Simulated p-value based on the null distribution in Figure 2 and an observed value of 
0.8889. 
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3. Assessing hot hand behavior across multiple basketball players 

In light of the assumptions in Section 2.1, the permutation test is not appropriate for in-game 
basketball data, as the number of attempts and probability of success on each attempt are 
influenced by a wide variety of factors (e.g. distance from the basket, performance of teammates 
or opponents, etc.).  As a result, most previous research has focused on controlled shooting 
experiments in which players shoot a pre-specified number of field goal attempts from fixed 
locations on the court (Jagacinski et al. 1979; Gilovich at el. 1985; Miller and Sanjurjo 2014). 

Rather than conduct a shooting experiment, we follow the lead of several papers (Koehler and 
Conley 2003; Miller and Sanjurjo 2015) and study data from the NBA Three-Point Contest.  In 
each round of the contest a participant has sixty seconds to attempt a series of 25 three-point 
field goals, five attempts each at five fixed locations around the three-point line (two locations in 
each of the corners at a distance of 22 feet from the basket, and three locations at a distance of 23 
feet 9 inches from the basket).  Therefore the number of attempts is fixed, and it is reasonable to 
assume that the probability of success is the same for all of a player’s attempts.  Furthermore, 
data on well-known NBA players participating in a real and popular contest is likely more 
interesting to students than data on anonymous players from a shooting experiment. 

Alternative application: Students could design and conduct a controlled shooting experiment 
to collect data on themselves or local basketball teams.  

 

3.1 Data collection 
 

The most comprehensive study to date of the hot hand in the NBA Three-Point Contest is Miller 
and Sanjurjo (2015) which uses data for the 1986 through 2015 contests; however, the data set is 
not yet publicly available.  We collected data from videos of the NBA Three-Point Contest from 
2013 through 2017.  (The 2016 and 2017 contests are not represented in Miller and Sanjurjo 
(2015)).  Each contest consisted of a first round and a championship round, and when necessary, 
tie break rounds.  From 2014 through 2017, eight players participated in the first round; in 2013 
six players participated in the first round.  In 2015 through 2017, the three players with the 
highest first round scores competed in the championship round, while in 2013 and 2014 two 
players competed in the championship round. 

The data set consists of the sequence of results of the attempts for each of 58 player-rounds, a 
total of 1413 field goal attempts.  A value of 1 represents a made field goal (success) and 0 
represents a miss (failure).  The following items describe a few details of the data collection. 

 In 2016, three players finished with the same first round score and competed in a thirty-
second tie break round (labeled round 1.5).  Due to the shorter length of the tie break 
round, two of the players attempted 14 shots, and the third attempted 13 shots.  
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 In 2014 and 2017, the championship round initially ended in a tie, so there was an 
additional sixty second round (round 2.5). 

 There were a few attempts in which the player made the shot but stepped on or over the 
three-point line before release.  We counted these trial as successes even though the 
contest itself did not. 

 In a few rounds the player released his final shot just after time expired. In these cases we 
counted made attempts as successes even though the contest did not. Recorded in this 
way, aside from the tie break round in 2016, there was only player-round in which the 
player did not complete all 25 attempts. 

 Attempts 1-5 and 21-25 are always in the corner locations, 6-10 and 16-20 on the wing 
locations, and 11-15 at the top of three-point line.  However, we did not collect data on 
whether the player proceeded in a clockwise or counter-clockwise direction. 

 The only data recorded were the order and outcome of each attempt.  In particular, we did 
not collect data on the time elapsed between attempts or whether the attempt was a 
“moneyball” (which in the contest is worth 2 points instead of 1). 

Alternative application: The data can be analyzed to assess the validity of the assumption of 
constant probability of success across attempts or locations.   Previous studies by Miller and 
Sanjurjo (2014, 2015) have found that players tend to perform relatively worse on their first 
two attempts than on the others, and students might consider omitting the first two attempts 
of each player-round.  Miller and Sanjurjo’s 2015 analysis concluded that, on average, 
players do not shoot significantly better or worse from any of the five locations (nor on the 
“moneyball” attempts). 

Alternative application: Miller and Sanjurjo (2015) merge data from multiple rounds, and in 
some cases from multiple contests, to construct a player’s shot sequence.  Students might 
wish to debate the merits of this approach.  Combining rounds enlarges the sample size for 
the player and hence increases the power of the test.  (We will combine rounds for our 
analysis.)  However, it could be argued that combining data from different contests violates 
the assumption of constant probability of success. 

 

3.2 Significance at the individual player level 

 

Appendix A summarizes the results of a permutation test for each of the players in the NBA 
Three-Point Contest data set.  For this analysis we pooled a player’s results within each contest, 
but not between contests, performing a test for each player-year (37 in total). (We refer to 
“player-year” simply as “player” in what follows.)  Statistic 2, the difference in proportions of 
successes between trials following streaks of 3 successes and all other trials, was used as the 
streak statistic for all tests. 
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Helpful hint: Each student or group could use the app to conduct the permutation test for 
different players.  The results could then be collected to form a table like that in Appendix A. 

At a significance level of 0.05, the null hypothesis of no hot hand is rejected in three of the tests 
(Stephen Curry 2016, Stephen Curry 2013, J.J. Redick 2015).  Two of the tests, while not 
significant at a strict 0.05 level, yield p-values of about 0.06 (C.J. McCollum 2016, Stephen 
Curry 2015).  Of course, we must consider the inflated probability of type I error when 
conducting multiple tests.  Assuming independence of tests, the probability that three or more of 
the 37 tests are significant at the 0.05 level is 0.28 if all 37 null hypotheses were true [0.28 = PሺX	
൒	3ሻ if X	~ Binomial(37, 0.05), a calculation which could be performed with a “one proportion” 
applet (e.g. Rossman/Chance, StatKey)].  Therefore, at strict level 0.05 the data do not provide 
convincing evidence in favor of the hot hand at the individual player level. 

Unfortunately, the permutation test suffers from low power at the player level, especially for 
players who only participate in one round of 25 trials. Even when the number of trials is large, 
there will be relatively fewer trials which follow a streak of 3 successes, and so the measure of a 
player’s success rate when in the “hot state” is highly variable.  (For these reasons, controlled 
shooting experiments typically involve at least 100 shots per player.) 

Alternative application: We have included in the analysis all players with at least one streak.  
A stricter threshold for inclusion could improve power.  Also, other streak statistics could be 
investigated as potentially more powerful alternatives to streak statistic 2.  

 

3.3 Average size of the hot hand effect 

 

Figure 6 displays the distribution of streak statistic 2, the difference in proportions of successes 
between trials following streaks of 3 successes and all other trials, for the 37 players in the data 
set (Appendix A).  For almost all of the individual players the permutation test is not significant 
at the 0.05 level.  However, for the majority of players there is directional evidence of hot hand 
behavior: for 21 of the 37 players the observed value of the streak statistic is greater than the 
median of the corresponding null distribution.  Furthermore, the mean difference between the 
observed streak statistic and the mean of the corresponding null distribution is about 7.5 
percentage points, a substantial difference in the context of basketball field goal percentages.  
Therefore, while the test is ill powered to detect hot hand behavior at the individual player level, 
the data do provide some evidence of a general tendency towards hot hand behavior across many 
players.   

Figure 6.  Values of streak statistic 2 with streak length 3 for the 37 players in Appendix A. 
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Potential pitfall: Interpreting Figure 6, in particular its center, requires some care.  In short, if 
there is no hot hand, the mean of the null distribution of streak statistic 2 is expected to be 
strictly less than 0.  For the 37 players, the mean of the null distribution ranges from -0.20 to 
-0.03 with a mean of -0.12.  (See Section 4 for further discussion of related issues.)  For this 
reason, it is better to consider standardized values of the streak statistic, as we do below. 

We use z-scores to measure the size of the hot hand effect.  For each player, the z-score is 
computed by subtracting the mean and dividing by the standard deviation of the corresponding 
null distribution.  Figure 7 displays the distribution of z-scores; the sample mean z-score is 0.340 
standard deviations above the (null) mean, and the sample standard deviation is 0.906. 

Figure 7.  Values of z-score of streak statistic 2 with streak length 3 standardized with respect to 
the null distribution for the 37 players in Appendix A. 

 

 

If there is no hot hand effect, the 37 standardized values represent a sample from a distribution 
with a mean of 0 (and a standard deviation of 1).  A one-sample t test provides some evidence to 
conclude that the mean z-score is greater than 0 (t = 2.28, p-value = 0.014) which implies that, 
on average, NBA players do exhibit hot hand behavior in the Three Point Contest.  Moreover, 
based on a one-sample t interval for the mean z-score, we estimate with 95% confidence that, on 
average, streak statistic 2 is between 0.038 and 0.642 standard deviations above what would be 
expected under the null hypothesis of no hot hand.  While the standard deviation of the null 
distribution varies between players, the mean value is 0.254.   Therefore, we can approximate 
that differences in proportion of successes between trials following streaks of 3 successes and all 
other trials are, on average, between 0.01 and 0.16 higher than what would be expected if the 
null hypothesis of no hot hand were true.  While the range of the confidence interval does not 
rule out the possibility of a small average hot hand effect, a difference of even a few percentage 
points is of high practical importance in the context of basketball field goal percentages. 

Alternative application: SBI methods could substitute for the t procedures above.  For 
example, the StatKey confidence interval applet yields a bootstrap 95% confidence interval 
of [0.056, 0.625] for the mean z-score. 

 

 



15 
 

3.4 Pedagogical outcomes 

Our presentation in Sections 2 and 3 demonstrates how “simulation-based inference acts as a 
sandbox for students to explore more advanced statistical topics” (Tintle et al. 2015, p. 364).  
The activities we introduce enable introductory statistics students to employ simulation-based 
reasoning in a novel situation involving sequential trials and streak statistics.  The analysis in 
Section 3 also provides opportunities to review or introduce topics of data collection, assumption 
checking, multiple testing, standardization, and effect size.  The material in Sections 2 and 3 
provides a strong foundation and many helpful suggestions for developing review or transfer 
activities for use in both introductory and subsequent statistics courses. 

Our activities are well aligned with the six recommendations of the Guidelines for Assessment 
and Instruction in Statistics Education (GAISE) College Report (2016).    The context – “can 
basketball players get a hot hand?” – requires little introduction and allows students to engage in 
statistical thinking throughout the investigative process: What data are appropriate for studying 
the hot hand? How do we measure how “hot” a player is?  What would we expect if there were 
no hot hand? Our simulation-based activities place the focus on understanding of core concepts 
such as null distribution and p-value. The real data from the NBA Three Point Contest will be 
familiar to most students, and the context and purpose can be motivated via any of the recent 
articles on the hot hand (Cohen 2015; Ellenberg 2015; Johnson 2015; Remnick 2015). Our 
“Helpful Hints” provide suggestions for fostering active learning, including through both tactile 
and technology-based simulations.   The app provides students with a user-friendly interactive 
technology to explore concepts of statistical inference and to analyze data to test for the hot 
hand. Finally, the hot hand activities can be used to evaluate student learning: How well can 
students transfer their knowledge of statistical inference to novel situations? 

Furthermore, our work demonstrates the practical relevance of simulation-based inference.  The 
hot hand research of Miller and Sanjurjo is evidence that simulation-based methods are 
becoming more mainstream in applied statistics (Tintle et al. 2015).   While the details of various 
applications are numerous, the core principles are the same as those encountered in an SBI 
introductory statistics curriculum, as illustrated by the permutation test procedure in Section 2. 
Unfortunately, implementing randomization-based methods beyond scenarios encountered in 
introductory statistics typically requires significant computer programming.  However, our app 
establishes a user-friendly interactive technology for conducting hot hand analyses.  Thus, our 
app and related activities provide students opportunities to conduct simulation-based inference in 
a real, recent, and relevant research setting. 

The methods in Sections 2 and 3 require only familiarity with the typical randomization-based 
procedures in an introductory statistics course.  Section 4 introduces additional topics for further 
study in courses with a stronger emphasis on probability or mathematical statistics. 
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4. Using probability and expected values to investigate recent findings on the 
hot hand effect 

 

Careful inspection of the null distribution plots in Section 2 reveals something somewhat 
surprising.  For the data in Table 1, if there is no hot hand we might expect the center of the null 
distribution of the proportion of successes on trials following streaks of success to be equal to 
0.64, the overall proportion of successes.  However, in Figure 2 the mean of the null distribution 
is about 0.55.  Similarly, if there is no hot hand we might expect the center of the null 
distribution of the difference in proportions of successes between trials following streaks and all 
other trials to be 0; yet in Figure 3 the mean is about -0.10.  In Figure 4, where the overall 
proportion of successes is 0.5, we find that the center of the null distribution is less than 0.5 even 
though the sample size is large. 

Observations such as these illustrate a bias which has important implications for research on the 
hot hand.  Miller and Sanjurjo (2016b) provide a thorough analysis of the bias and its 
implications.  The authors motivate the source of the bias through a simple coin flipping problem 
which has a surprising answer.  We present the problem and its solution, along with the most 
popular incorrect solution.  The controversy surrounding the problem demonstrates the 
importance of understanding fundamental concepts in probability (e.g. random variables). 

The coin flipping problem illustrates the source of the bias in previous hot hand studies.  To 
demonstrate the implications of the bias, we reproduce an analysis of Miller and Sanjurjo 
(2016b) which uses data from the original Gilovich et al. (1985) study.  We summarize the 
analysis and conclusions of Gilovich et al. (1985) and exhibit how they suffer from bias.  We 
then reanalyze the data, using our Shiny app to correct for the bias, and consequently find 
evidence of an average hot hand effect present in the original Gilovich et al. (1985) data. 

 

4.1 A simple coin flip problem (with a surprising answer) 

 

The following seemingly simple problem was first presented in Miller and Sanjurjo (2016b) and 
has been the subject of much recent media coverage and debate, prompting the mathematician 
and author Jordan Ellenberg to call it “the Monty Hall problem of our time” (Ellenberg 2016). 

Problem 1.  Flip a fair coin four times and record the results in sequence.  For the recorded 
sequence, compute the proportion of the trials immediately following H that result in H.  
What is the expected value of this proportion?  If there are no trials which follow a H, i.e. the 
outcome is either TTTT or TTTH, discard the sequence and try again with four more flips. 

We think that most people would expect the answer to Problem 1 to be 0.5.  After all, the trials 
are independent, so it should not matter if a flip follows a H or not.  But the surprising answer is 
that the proportion is expected to be less than 0.5!  We now present a solution to Problem 1 



17 
 

based on first principles – considering the sample space of the coin flip process, defining 
appropriate random variables, and deriving their distributions. 

After discarding TTTT and TTTH there are 14 remaining equally likely outcomes.  Let Z  be the 
number of flips immediately following H and let Y  be the number of flips immediately 
following H that result in H.  Then the proportion of flips following H that result in H is the 
random variable X	ൌ	Y/Z. Table 3 displays the sample space of possible coin flip sequences in 
Problem 1 and the corresponding values of the random variables X,	Y,	Z. 

Table 3.  The sample space for Problem 1. Flips which follow H are in boldface. 

Outcome 

Number of 
flips 

following H 
(Z) 

Number of flips 
following H 

that result in H 
(Y) 

Proportion of flips 
following H that 

result in H 
(X	ൌ	Y/Z) 

HHHH 3 3 1 
HHHT 3 2 2/3 
HHTH 2 1 1/2 
HTHH 2 1 1/2 
THHH 2 2 1 
HHTT 2 1 1/2 
HTHT 2 0 0 
HTTH 1 0 0 
THHT 2 1 1/2 
THTH 1 0 0 
TTHH 1 1 1 
HTTT 1 0 0 
THTT 1 0 0 
TTHT 1 0 0 
TTTH 

These outcomes are discarded. 
TTTT 

 

Table 4 displays the marginal distribution of X.  [All of the distributions in this section are 
conditional on ሼܼ ൐ 0ሽ ൌ 	 ሼTTTH, TTTTሽ௖,	the event that there is at least one H in the first three 
flips.  For simplicity we have suppressed the conditioning from the notation.] 

Table 4.  The probability mass function of X, the proportion of flips following H that result in H 
in Problem 1. 

x	 0 1/2 2/3 1 
PሺXൌxሻ	 6/14 4/14 1/14 3/14 

 

For example, over many repetitions of four flips of a fair coin with at least one H in the first 
three flips, in about 43% of the repetitions the proportion of flips following H that results in H 
would be 0, in about 29% of the repetitions it would be 0.5, etc. 
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To answer Problem 1, in a sequence of four flips of a fair coin with at least one H in the first 
three flips, the expected value of the proportion of flips following H that result in H is 0.405.   

ሺܺሻܧ ൌ 	 ሺ0ሻሺ6/14ሻ ൅ ሺ1/2ሻሺ4/14ሻ ൅ ሺ2/3ሻሺ1/14ሻ ൅ ሺ1ሻሺ3/14ሻ 	ൌ 	17/42	 ൎ 	0.405. 

It is also instructive to consider the joint distribution of the count random variables Y  and Z  
(again conditional on at least one H in the first three flips). 

Table 5.  The joint probability mass function, ݌௒,௓ሺݕ, ሻݖ ൌ ܲሺܻ ൌ ,ݕ ܼ ൌ  ሻ, of Z,  the numberݖ
of flips immediately following H, and Y,  the number of flips immediately following H that result 
in H, in Problem 1.   

 z	
1 2 3 

y 

0 5/14 1/14 0 
1 1/14 4/14 0 
2 0 1/14 1/14 
3 0 0 1/14 

 

The proportion of flips following H that result in H is Y/Z, a function of Y  and Z.  Its expected 
value can be obtained from the joint distribution using the “law of the unconscious statistician”. 
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From the marginal distribution of Y		and Z  we obtain EሺYሻ	ൌ	12/14 and EሺZሻ	ൌ	24/14, and so 
EሺYሻ/EሺZሻ	ൌ	12/24	ൌ	0.5. A common misconception is that EሺY/Zሻ is equal to EሺYሻ/EሺZሻ.  A 
similar “12/24 argument” will be discussed further in the next subsection. 

Helpful hint: We suggest introducing a problem such as the following. 

A toy store has a bin containing marbles which are identical except for their color.  There 
are 4 blue marbles, 1 red marble, 3 green marbles, and 6 white marbles. Blue marbles are 
$0.50 each, red $0.67, green $1.00 each, and white marbles are free ($0).  Let	X  be the 
price ($) of a randomly selected marble.  Compute the expected value of X.   

The random variable X  has the same distribution and therefore the same expected value as 
the proportion of flips following H that result in H in Problem 1.  While the marble problem 
is not interesting, it allows students to remove themselves from any penchant for disbelief 
due to preconceived notions about coin tossing. The marble problem is straightforward since 
its wording makes explicit the random variable involved and how its values are determined.  
In contrast, the difficulty in Problem 1 is that the appropriate random variables involved are 
not as apparent or as well behaved as intuition suggests. 
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4.2 Confusion over the coin flip problem 

 

Problem 1 first appeared in Miller and Sanjurjo (2016b) and received widespread attention 
following a post on Andrew Gelman’s blog (Gelman 2015).  The problem has since been 
featured in the New York Times (Johnson 2015), The Wall Street Journal (Cohen 2015), The New 
Yorker (Remnick 2015), and Slate Magazine (Ellenberg 2015), among others.  [Miller and 
Sanjurjo (2016a) and the authors’ websites provide a more comprehensive account of media and 
online coverage.] 

Unsurprisingly, the result of the coin flip problem (0.405 instead of 0.5) has been met with much 
skepticism.  Miller and Sanjurjo (2016a) provides an interesting and comprehensive discussion 
of the problem and related probability puzzles, most of which of is accessible to students in a 
first course in probability.  We do not attempt to summarize all aspects of the issues involved.  
Instead we present now a popular alternative but incorrect solution to Problem 1 and discuss its 
crucial mistake, which involves a misunderstanding of the basic concept of a random variable. 

Helpful hint: Problem 1 illustrates the importance of understanding fundamental concepts 
like random variables, proportion versus probability, and probability versus conditional 
probability.  We emphasize in Sections 4.2 and 4.3 that care must be taken to not confuse the 
subtle probabilistic concepts involved. 

A popular assertion for why the answer to Problem 1 should be 0.5 resembles the following, 
which we call the “12/24 argument”: “Among the outcomes in Table 3, (1) there are 24 flips that 
follow H of which 12 result in H, so (2) the expected value of the proportion of flips following H 
that result in H must be 12/24 = 0.5.” 

While (1) is true, the incorrect “12/24 argument” forgets what a sampling distribution of a 
statistic is, or more generally, what the distribution of a random variable is (or even just what a 
random variable is). An outcome consists of four flips, rather than a single flip.  Some of the 24 
flips that follow H appear within the same outcome (e.g., HHTH contains 2 flips that follow H, 
HHHT contains 3, etc). The 24 flips themselves are not distinct outcomes. 

Imagine simulating the distribution of a random variable (or the sampling distribution of a 
statistic).   The process is as follows. 

1. Simulate an outcome of the underlying random process (or a particular sample); for 
example, HHHT. 

2. Compute the value of the random variable for this particular outcome (or the value of 
the statistic for this particular sample); for example, 2/3. 

3. Repeat. 

While the simulation process is eventually repeated many times, it is extremely important to 
remember that in a single repetition the simulated value of the random variable (or statistic) is 
computed based solely on the particular simulated outcome (or sample) for that repetition.  The 
results of many repetitions can be aggregated to approximate probabilities or expected values; 
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for example, the mean of many simulated values of the random variable approximates its 
expected value.  However, computation of the values of the random variable itself proceeds 
outcome-by-outcome, repetition-by-repetition. 

The object of interest in the coin flip problem is the proportion of flips which follow H that result 
in H.  While this object might seem like a (conditional) probability it is in fact a random variable 
(just as the usual sample proportion is a random variable).  Thus, computation of values of the 
proportion must occur outcome by outcome.  First, the value of the proportion is computed for 
each outcome (a set of four flips); then the values are aggregated (by averaging) to find the 
expected value.  The first step is essential; however, the “12/24 argument” ignores it entirely and 
neglects to incorporate the primary random variable involved in Problem 1. 

 

4.3 The conditional probability of H following H 
 

It is important to be clear about what the solution to Problem 1 does not imply.  Problem 1 
concerns the proportion of H in flips following H, a random variable, whose value varies 
outcome-to-outcome, which has expected value 0.405. 

In contrast, the conditional probability of H on a flip following H is a single number, which of 
course is equal to 0.5.  The “12/24 argument” essentially attempts to compute this conditional 
probability, but again the “12/24 argument” is wrong because the answer to Problem 1 does not 
concern a conditional probability but rather the expected value of a random variable. 

Problem 2 in the following table restates Problem 1 as an equivalent problem involving a 
probability rather than an expected value.  For comparison, Problem 3 presents a two-stage 
random process in which the probability that the second stage results in H represents the 
conditional probability of H following H. 

 

 

Table 6.  Comparison of two-stage random processes.  

 Problem 2 (restating Problem 1) Problem 3 
Stage 1 Flip a fair coin four times and record the 

results in sequence.  If the outcome is TTTH 
or TTTT discard it and try again. 

Flip a fair coin.  If it 
lands T discard the trial 
and try again. 

Stage 2 From the sequence observed in stage 1, select 
uniformly at random one of the flips which 
immediately follows a H, and record the 
result of the selected flip. 

Flip the coin again and 
record the result. 

P(Stage 2 results in H) 17/42 1/2 
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In Problem 2, the conditional probability that the stage 2 selection results in H varies depending 
on the outcome of stage 1.  For example, if the outcome of stage 1 is HHHH, then the 
conditional probability that the stage 2 selection results in H is 1; for HHHT it is 2/3; for HHTH 
it is 1/2, etc.  The probability that stage 2 results in H in Problem 2 – conditional on A = {TTTH, 
TTTT}c, the event that the sequence is not discarded in stage 1 – can be computed by the law of 
total probability. 

ܲሺstage	2	results	in	H	|	ܣሻ	

ൌ 	෍ܲሺstage	2	results	in	H|stage	1	outcome, 		ሻܣ	|	outcome	1	ሻܲሺstageܣ
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The randomness in stage 2 in Problem 2 is due to sampling from the finite population determined 
by the result of stage 1.  In contrast, the randomness in stage 2 in Problem 3 is due to a coin flip 
which is independent of the result of stage 1.  In essence, in Problem 2 all the coin flips are 
performed at once and then the sequence is inspected, while in Problem 3 the inspection occurs 
after each individual flip.  (We discuss some related issues in Section 5.)  

The solution to Problem 1 also does not imply that coin flips are not independent.  As always, 
each flip of the coin is independent of all other flips.  However, independence involves the 
conditional probability of H following H, which we have already stressed is a different object 
than the proportion of H following H.  What Problem 1 does imply is that in four independent 
fair coin flips the retrospective proportion of H following H is a biased estimator of the true 
conditional probability of H following H.  This bias has important implications for research on 
the hot hand phenomenon. 

 

4.4 Implications for hot hand research 

 

Beginning with the seminal paper of Gilovich et al. (1985) up until the work of Miller and 
Sanjurjo (2014, 2015, 2016b) the consensus conclusion of previous research had been that there 
is no evidence of a hot hand in basketball, hence the “hot hand fallacy”.  The idea behind the 
conclusion resembles the following.  Consider a player who attempts 100 shots and makes 50%.  
If there is no hot hand, then we would expect the player to make 50% of shots both on attempts 
that follow hit streaks and on other attempts.  Therefore, a success rate of 50% on both sets of 
attempts provides no evidence of the hot hand. 

However, Miller and Sanjurjo (2014, 2015, 2016b) discovered that the above reasoning is subject 
to a bias.  If there is no hot hand, we would actually expect the player to have a shooting 
percentage of strictly less than 50% on attempts following streaks, and strictly greater than 50% 
on other attempts.  Therefore a success rate of 50% on both sets of attempts actually provides 
directional evidence in favor of the hot hand. 
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Problem 1 provides a concrete example of the source of the bias: in a fixed number of trials, the 
proportion of H on trials following H is expected to be less than the true probability of H, even 
though the trials are independent.  The figures in Section 2 and the “null mean” column in 
Appendix A exhibit the magnitude of the bias encountered under the conditions of the NBA 
Three Point Contest.  Intuiting the reason behind the bias is much more subtle.  We refer the 
reader to the “primer” paper of Miller and Sanjurjo (2016a) which provides a detailed treatment 
of the issues involved.  In particular, see Section 2.2 of Miller and Sanjurjo (2016a) for an 
explanation of the bias based on runs. 

Helpful hint: Miller and Sanjurjo (2016a) contains many interesting examples and probability 
puzzles.  Furthermore, the paper provides a fascinating account of the media coverage and 
response to Miller and Sanjurjo’s work and the coin flipping problem (Problem 1).  (Imagine 
the controversy over Marilyn vos Savant and the Monty Hall problem taking place today.)  
The paper is well worth discussing in undergraduate courses in probability. 

To illustrate the ramifications of the bias in hot hand studies, we reproduce here an analysis of 
Miller and Sanjurjo (2016b, sec. 3.2, Table 2), which itself is based on data from Gilovich et al. 
(1985, pp. 304-307, Table 4).  Appendix B provides a table of the data and some results.  The 
data were taken from a controlled shooting experiment involving the 26 players on the men’s and 
women’s basketball teams at Cornell University; see Gilovich et al. (1985) for further details.   

As in the previous studies, we use streak statistic 3, the difference in proportion of S (after 
streaks of S - after streaks of F) with streak length 3. [One player had no streaks of length 3 and 
was excluded from the analysis.] The mean difference is 0.034 with a standard deviation of 
0.240.  Gilovich et al. (1985) concluded, based on a one-sample t test, that the mean difference is 
not significantly greater than 0 (t = 0.7, p-value = 0.24), and so there is no evidence of the hot 
hand.  However, this analysis assumes that the mean difference is expected to be 0 under the null 
hypothesis of no hot hand, which as we have discussed is incorrect.  Therefore, the analysis of 
Gilovich et al. (1985) suffers from a bias which invalidates the conclusion. 

The permutation test of Section 2 provides a mechanism for correcting for the bias.  The mean of 
the permutation distribution is the expected value of the difference in success rates under the null 
hypothesis of no hot hand for a player with the specified number of successes.  Therefore to 
assess evidence against the null hypothesis of no hot hand, an observed value of the difference in 
success rates should be judged relative to the mean of the corresponding permutation 
distribution, rather than 0.  We compute a bias-corrected value for each player by subtracting the 
mean of the player’s null distribution from the observed value of the streak statistic.  [We follow 
the same procedure as Miller and Sanjurjo (2016b) but the null means are computed using our 
Shiny app with the “input summary statistics” option. Our results are consistent with theirs.]  
While the amount of bias correction varies among players, it is about 10 percentage points on 
average.  (In some sense, using 0 as a reference value when comparing trials following streaks of 
success to trials following streaks of failures introduces a “double” bias: if there is no hot hand, 
the success rate on trials following streaks of successes is expected to be less than the overall 
success rate, while the success rate on trials following streaks of failures is expected to be greater 
than the overall success rate.) 
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Figure 8.  Values of the streak statistic and the bias-corrected values for the data in Appendix B. 

 

 

The mean of the bias-corrected values is 0.126 with a standard deviation of 0.240.  Under the 
null hypothesis of no hot hand, the bias-corrected values represent a sample from a distribution 
with a mean of 0, and thus the usual one-sample t test applies.  The t test based on the bias-
corrected values does in fact provide significant evidence to reject the null hypothesis of no hot 
hand at the player-average level (t = 2.62, p-value = 0.007), reversing the conclusion of the 
Gilovich et al. (1985) analysis.  That is, after correcting for bias, the data in the seminal paper 
which gave rise to the phrase “hot hand fallacy” actually offer evidence in favor of the hot hand. 

Helpful hint: Technically, the null standard deviations do vary from player to player, so 
adjusting via z-scores (as in Section 3.3) might be more appropriate.  However, the 
variability of the null standard deviations for the Gilovich et al. (1985) data is small, in large 
part because almost all of the 25 players who were included in the analysis took 100 shots.  
The t-statistic based on z-scores is 2.61 (versus 2.62) and the conclusion doesn’t change.  
Therefore, we just subtract the means (1) to simplify, (2) to stay consistent with Miller and 
Sanjurjo (2016b), and (3) to emphasize that bias relates to the center of a distribution. 

Alternative application: This section illustrates how correcting for bias affects the analysis of 
Gilovich et al. (1985), which was based on t procedures.  Bootstrap procedures based on the 
bias-corrected values could be investigated as alternatives to the t procedures. 

We present the above analysis merely as an illustration of how the bias impacts the analysis and 
conclusions of previous hot hand research.  Miller and Sanjurjo (2014) provide a thorough 
examination of previous research on the hot hand in basketball, and upon correcting for bias they 
find “clear evidence of an average hot hand effect, across all extant controlled shooting studies.” 
(Miller and Sanjurjo 2014, p. 30). 

Alternative application: Miller and Sanjurjo (2016b) can be adapted into simulation activities 
to investigate how the bias depends on the sample size, the probability of success, and the 
streak length.  To reduce the amount of coding, students could be provided with the 
streak_stats.r function from the app to compute the streak statistics.  Note that Miller and 
Sanjurjo (2016b) analyze the sampling distribution of a streak statistic under the null, while 
our app simulates the permutation distribution.  These two distributions are closely related 
(through the law of total probability), but there is an important distinction: the total number 
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of trials and successes are fixed when simulating the permutation distribution, whereas for 
the sampling distribution, only the number of trials is fixed so the total number of successes 
varies from sample to sample (like in Problem 1). 

 

 

5. Conclusions 

 

We have presented probability concepts underlying a bias in previous research on the hot hand in 
basketball, as well as a bias corrected randomization-based procedure for testing for hot hand 
behavior.  Our presentation demonstrates that simulation-based reasoning is an important 
component of statistical literacy.  For example, the solution to the coin flip problem in Section 4 
is, on the surface, counterintuitive and has caused some minor controversy.  However, the correct 
solution quickly becomes apparent after some simulation-based thinking (as discussed in 
Sections 4.2 and 4.3).  Simulation-based thinking involves considering questions such as: What 
does one repetition of the random process entail?  What is being measured for an outcome?  How 
can the results of many simulated repetitions be used to approximate the probabilistic objects of 
interest?  Those with the facility to answer such questions are well equipped to reason 
probabilistically even if they are unfamiliar with terminology or mathematical concepts such as 
sample space, random variable, or expected value.  

The hot hand analysis is a situation where the inherent “naiveté” of a simulation-based approach 
is beneficial.  The idea of randomly permuting the order of sequential trials is a natural extension 
of randomization-based procedures for comparing groups.  Therefore, someone familiar with 
SBI methods is well suited to carry out the unbiased analysis in Section 2, without any particular 
qualms or preconceived notions about what the center of the null distribution “should be”.  After 
all, if the simulation properly incorporates the null hypothesis, the center of the simulated null 
distribution will be whatever it should be.  Following a simulation-based approach avoids the 
mistake of Gilovich et al. (1985) of assuming a biased value for the center of the null 
distribution.  (Of course, someone performing the hot hand permutation test might notice that the 
center of the null distribution seems “off” and question whether the simulation were performed 
properly.  Such observations can motivate discussions relating to the topics in Section 4.) 

The hot hand analysis also demonstrates the essential role that the method of data collection 
plays in determining appropriate statistical methods and conclusions.  Consider someone 
observing a sequence of independent fair coin flips.  After some number of flips, the observer 
notices that among the flips which followed H a higher proportion resulted in T than in H.  As 
discussed in Section 4, such a result is actually to be expected when retrospectively inspecting 
the outcomes of a sequence of independent trials.  However, Gilovich et al. (1985) committed the 
“fallacy” of neglecting to recognize the truth in such an observation.  Unfortunately, the bias in 
the methods of Gilovich et al. (1985) and other hot hand studies has gone unnoticed, so the 
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resulting conclusions which promoted the “hot hand fallacy” have remained largely 
unchallenged for almost thirty years. 

Now consider again the observer. Observing some number of flips and then retrospectively 
inspecting the sequence is a natural and valid way of collecting data.  Furthermore, observing a 
higher proportion of T than H on flips following H is to be expected.  The observer only commits 
a fallacy (the “gambler’s fallacy”) when concluding that the observed result necessarily implies 
that the trials are not independent.  It would be a fallacy to conclude based on the observed data 
that a future flip which follows H is more likely to result in T than in H, since the retrospective 
proportion of H following H is a biased estimator of the true conditional probability of H 
following H (as discussed in Section 4).  However, this bias is so subtle that it has gone 
unnoticed, even by statisticians, until very recently. 
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Appendix A: 2013-2017 NBA Three Point Contest participant statistics, with 
streak length of 3 (sorted by p-value of the permutation test) 

Player Year 

Number 
of 

trials 

Number 
of 

successes 

Number 
of 

streaks 

Proportion 
of S 

on trials 
following 
streaks 

Proportion 
of S 
on all 
other 
trials 

Difference 
in 

proportions 
Null 

median 
Null 
mean 

Null 
SD  p‐value z‐score 

Curry.Stephen  2016  50  33  17  0.82  0.58  0.25  ‐0.03  ‐0.04  0.16  0.03  1.83 

Curry.Stephen  2013  25  14  7  0.86  0.44  0.41  ‐0.07  ‐0.14  0.30  0.03  1.82 

Redick.JJ  2015  25  16  7  0.86  0.56  0.30  ‐0.05  ‐0.10  0.26  0.05  1.56 

McCollum.CJ  2016  25  11  4  0.75  0.38  0.37  ‐0.46  ‐0.19  0.32  0.06  1.75 

Curry.Stephen  2015  50  36  22  0.82  0.64  0.18  ‐0.03  ‐0.04  0.14  0.07  1.53 

Redick.JJ  2016  38  20  9  0.67  0.48  0.18  ‐0.03  ‐0.10  0.26  0.12  1.11 

Thompson.Klay  2015  50  26  9  0.67  0.49  0.18  ‐0.02  ‐0.08  0.23  0.13  1.13 

Anderson.Ryan  2013  25  14  4  0.75  0.52  0.23  ‐0.07  ‐0.14  0.31  0.13  1.21 

Johnson.Joe  2014  22  10  3  0.67  0.42  0.25  ‐0.48  ‐0.20  0.33  0.16  1.35 

Thompson.Klay  2016  50  37  20  0.80  0.70  0.10  ‐0.03  ‐0.03  0.13  0.17  0.99 

Korver.Kyle  2015  25  14  6  0.67  0.53  0.14  ‐0.07  ‐0.14  0.31  0.19  0.93 

Curry.Stephen  2014  25  12  4  0.50  0.48  0.02  ‐0.17  ‐0.18  0.32  0.26  0.63 

George.Paul  2013  25  9  2  0.50  0.35  0.15  ‐0.38  ‐0.19  0.29  0.29  1.19 

Beal.Bradley  2014  75  41  10  0.60  0.54  0.06  ‐0.05  ‐0.04  0.17  0.29  0.63 

Walker.Kemba  2017  50  26  7  0.57  0.51  0.06  ‐0.02  ‐0.08  0.23  0.32  0.61 

Harden.James  2016  39  21  7  0.57  0.53  0.04  ‐0.05  ‐0.10  0.25  0.36  0.54 

Afflalo.Arron  2014  25  11  2  0.50  0.43  0.07  ‐0.46  ‐0.19  0.32  0.38  0.80 

Belinelli.Marco  2015  25  13  2  0.50  0.52  ‐0.02  ‐0.15  ‐0.16  0.32  0.39  0.45 

Matthews.Wesley  2015  25  15  5  0.60  0.60  0.00  ‐0.12  ‐0.12  0.28  0.42  0.43 

Irving.Kyrie  2015  50  31  13  0.62  0.62  ‐0.01  ‐0.03  ‐0.05  0.18  0.44  0.24 

Bonner.Matt  2013  50  32  11  0.64  0.64  0.00  ‐0.03  ‐0.05  0.17  0.45  0.25 

Irving.Kyrie  2013  50  35  19  0.68  0.71  ‐0.03  ‐0.03  ‐0.04  0.14  0.50  0.09 

Belinelli.Marco  2014  75  44  16  0.56  0.59  ‐0.03  ‐0.03  ‐0.04  0.15  0.52  0.04 

Gordon.Eric  2017  75  48  20  0.60  0.65  ‐0.05  ‐0.02  ‐0.03  0.13  0.61  ‐0.18 

Novak.Steve  2013  25  13  3  0.33  0.55  ‐0.21  ‐0.15  ‐0.16  0.32  0.65  ‐0.16 

Love.Kevin  2014  25  13  3  0.33  0.55  ‐0.21  ‐0.15  ‐0.16  0.32  0.65  ‐0.15 

Irving.Kyrie  2014  25  13  3  0.33  0.55  ‐0.21  ‐0.15  ‐0.16  0.32  0.65  ‐0.16 

Booker.Devin  2016  64  33  5  0.40  0.53  ‐0.13  ‐0.02  ‐0.06  0.20  0.67  ‐0.31 

Thompson.Klay  2017  25  14  3  0.33  0.59  ‐0.26  ‐0.07  ‐0.14  0.31  0.73  ‐0.37 

Lillard.Damian  2014  25  14  4  0.25  0.62  ‐0.37  ‐0.07  ‐0.14  0.30  0.79  ‐0.75 

Irving.Kyrie  2017  75  41  9  0.33  0.58  ‐0.24  ‐0.05  ‐0.04  0.17  0.89  ‐1.19 

Matthews.Wesley  2017  25  8  1  0.00  0.33  ‐0.33  ‐0.33  ‐0.19  0.27  0.96  ‐0.55 

Lowry.Kyle  2017  25  8  1  0.00  0.33  ‐0.33  ‐0.33  ‐0.19  0.27  0.96  ‐0.56 

Young.Nick  2017  25  14  2  0.00  0.61  ‐0.61  ‐0.07  ‐0.14  0.31  0.96  ‐1.52 

Lowry.Kyle  2016  25  12  2  0.00  0.52  ‐0.52  ‐0.17  ‐0.18  0.32  0.98  ‐1.06 

Harden.James  2015  25  10  2  0.00  0.43  ‐0.43  ‐0.42  ‐0.19  0.30  1.00  ‐0.80 

Middleton.Khris  2016  25  10  2  0.00  0.43  ‐0.43  ‐0.42  ‐0.19  0.30  1.00  ‐0.80 

McCollum.CJ  2017  25  8  0  NA  0.32  NA  ‐0.33  ‐0.19  0.27  NA  NA              

Mean  37  21  7  0.49  0.52  ‐0.04  ‐0.15  ‐0.12  0.25  0.47  0.34 
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Appendix B: Gilovich et al. (1985) participant statistics with bias correction 

Sex Player 
Number 
of trials 

Number 
of 

successes 

Proportion 
of S 

on all 
trials 

Proportion 
of S 

on trials 
following 

streaks of 3 
successes 

Proportion 
of S 

on trials 
following 
streaks of 
3 failures 

Difference 
in 

proportions 
Null 
mean 

Bias 
corrected 
difference 

in 
proportions 

Null 
SD 

M 1 100 54 0.54 0.50 0.44 0.06 -0.08 0.14 0.22 

M 2 100 35 0.35 0.00 0.43 -0.43 -0.10 -0.33 0.25 

M 3 100 60 0.60 0.60 0.67 -0.07 -0.09 0.02 0.24 

M 4 90 36 0.40 0.33 0.47 -0.13 -0.10 -0.03 0.25 

M 5 100 42 0.42 0.33 0.75 -0.42 -0.08 -0.34 0.23 

M 6 100 57 0.57 0.65 0.25 0.40 -0.08 0.48 0.23 

M 7 75 42 0.56 0.65 0.29 0.36 -0.11 0.47 0.27 

M 8 50 25 0.50 0.57 0.50 0.07 -0.17 0.24 0.33 

M 9 100 54 0.54 0.83 0.35 0.48 -0.08 0.56 0.22 

M 10 100 60 0.60 0.57 0.57 0.00 -0.09 0.09 0.24 

M 11 100 58 0.58 0.62 0.57 0.05 -0.08 0.13 0.23 

M 12 100 44 0.44 0.43 0.41 0.02 -0.08 0.10 0.23 

M 13 100 61 0.61 0.50 0.40 0.10 -0.09 0.19 0.24 

M 14 100 59 0.59 0.60 0.50 0.10 -0.08 0.18 0.23 

F 1 100 48 0.48 0.33 0.67 -0.33 -0.08 -0.25 0.22 

F 2 100 34 0.34 0.40 0.43 -0.03 -0.10 0.07 0.25 

F 3 100 39 0.39 0.50 0.36 0.14 -0.09 0.23 0.24 

F 4 100 32 0.32 0.33 0.27 0.07 -0.11 0.18 0.26 

F 5 100 36 0.36 0.20 0.22 -0.02 -0.10 0.08 0.25 

F 6 100 46 0.46 0.29 0.55 -0.26 -0.08 -0.18 0.22 

F 7 100 41 0.41 0.62 0.32 0.30 -0.09 0.39 0.23 

F 8 100 53 0.53 0.73 0.67 0.07 -0.08 0.15 0.22 

F 9 100 45 0.45 0.50 0.46 0.04 -0.08 0.12 0.22 

F 10 100 46 0.46 0.71 0.32 0.40 -0.08 0.48 0.22 

F 11 100 53 0.53 0.38 0.50 -0.12 -0.08 -0.04 0.22 

F 12 100 47 0.47 NA 0.45 NA -0.07 NA 0.22 
           

Mean       0.03 -0.09 0.13 0.24 
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